
Replication
http://www.percona.com/training/

http://www.percona.com/training/

Replication

HOW IT WORKS

© 2011 - 2021 Percona, Inc.
2 / 50

Replication Overview

© 2011 - 2021 Percona, Inc.
3 / 50

The local database
Stores data used in the replication process, and other instance-
speciFc data
Collections in the local database are not replicated
Contains the Operations Log (Oplog)

© 2011 - 2021 Percona, Inc.
4 / 50

Operations Log (Oplog)
The operations log (oplog), is a special capped collection that is
the basis for replication
The oplog maintains one entry for each document affected by
every write operation
Secondaries copy operations from the oplog of their sync source
Each operation in the oplog is idempotent

© 2011 - 2021 Percona, Inc.
5 / 50

Operations Log (Oplog)
Secondaries collect oplog entries in batches grouped by
document id
MongoDB applies batches in parallel with different threads
Before MongoDB 4.0, read operations on secondaries would be
blocked until any ongoing replication completes

© 2011 - 2021 Percona, Inc.
6 / 50

Operations Log (Oplog)

This will be represented in the oplog:

db.foo.remove({ age : 30 })

{ "ts" : Timestamp(1407159845, 5), "h" : NumberLong("-704612487691926908"),
"v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 65 } }
{ "ts" : Timestamp(1407159845, 1), "h" : NumberLong("6014126345225019794"),
"v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 333 } }
{ "ts" : Timestamp(1407159845, 4), "h" : NumberLong("8178791764238465439"),
"v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 447 } }
{ "ts" : Timestamp(1407159845, 3), "h" : NumberLong("-1707391001705528381"),
"v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 1033 } }
{ "ts" : Timestamp(1407159845, 2), "h" : NumberLong("-6814297392442406598"),
"v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 9971 } }

© 2011 - 2021 Percona, Inc.
7 / 50

Viewing oplog size
rs.printReplicationInfo()

configured oplog size: 10.10546875MB
log length start to end: 94400 (26.22hrs)
oplog first event time: Mon Mar 19 2012 13:50:38 GMT-0400 (EDT)
oplog last event time: Wed Oct 03 2012 14:59:10 GMT-0400 (EDT)
now: Wed Oct 03 2012 15:00:21 GMT-0400 (EDT)

© 2011 - 2021 Percona, Inc.
8 / 50

Replication Hearbeat

© 2011 - 2021 Percona, Inc.
9 / 50

Election of New Primary
When a primary does not communicate with the other members
of the set for more than the conFgured
electionTimeoutMillis period (10 seconds by default), an
eligible secondary calls for an election to nominate itself as the
new primary

© 2011 - 2021 Percona, Inc.
10 / 50

Election of New Primary

© 2011 - 2021 Percona, Inc.
11 / 50

Change Streams
Access real-time data changes without tailing the oplog

Applications can use change streams to subscribe to all data
changes on a single collection, a database, or an entire
deployment

Change Streams rely on the aggregation framework

Applications can also Flter for speciFc changes or transform the
notiFcations at will

© 2011 - 2021 Percona, Inc.
12 / 50

Replication

CONFIGURATION

© 2011 - 2021 Percona, Inc.
13 / 50

Replication Methods
rs.initiate()
rs.reconFg()
rs.add()
rs.addArb()
rs.remove()

© 2011 - 2021 Percona, Inc.
14 / 50

Replication Methods (2)
rs.freeze()
rs.stepDown()
rs.syncFrom()
rs.slaveOk()

© 2011 - 2021 Percona, Inc.
15 / 50

How to Check Runtime ConFg and Status
Inspect the replication conFguration

Inspect the current status

Check lag

rs.conf()

rs.status()

rs.printSlaveReplicationInfo()

© 2011 - 2021 Percona, Inc.
16 / 50

ConFguration Options
Available conFguration values

{

 _id: <string>,

 version: <int>,

 protocolVersion: <number>,

 writeConcernMajorityJournalDefault: <boolean>,

 configsvr: <boolean>,

 members: [

 {

 _id: <int>,

 host: <string>,

 arbiterOnly: <boolean>,

 buildIndexes: <boolean>,

 hidden: <boolean>,

 priority: <number>,

 tags: <document>,

 slaveDelay: <int>,

 votes: <number>

 },

 ...

],

 settings: {

 chainingAllowed : <boolean>,

 heartbeatIntervalMillis : <int>,

 heartbeatTimeoutSecs: <int>,

 electionTimeoutMillis : <int>,

 catchUpTimeoutMillis : <int>,

 getLastErrorModes : <document>,

 getLastErrorDefaults : <document>,

 replicaSetId: <ObjectId>

 }

}
© 2011 - 2021 Percona, Inc.

17 / 50

Replica Set Member States
STARTUP

not yet member of any set
PRIMARY
SECONDARY
ARBITER

© 2011 - 2021 Percona, Inc.
18 / 50

Replica Set Member States (2)
ROLLBACK

actively doing rollback
RECOVERING

completing rollback or resync
STARTUP2

running initial sync

Note: while on these states, nodes can still vote but not serve reads

© 2011 - 2021 Percona, Inc.
19 / 50

Replica Set Member States (3)
UNKNOWN
DOWN
REMOVED

was once a member of replica set

© 2011 - 2021 Percona, Inc.
20 / 50

Replication Exercises
1. Stop any running mongod processes

2. Create data directories for 3 replica set members

3. Give permissions

sudo service mongod stop

sudo mkdir -p /mongodb/data/rs{1,2,3}

sudo chown mongod: /mongodb/data/*

© 2011 - 2021 Percona, Inc.
21 / 50

Replication Exercises
3. Launch Each Member

Launch each member on different screen session, we will not
fork the processes in the background for this exercise

screen -S rs1 -d -m mongod --replSet myReplSet --dbpath /mongodb/data/rs1 \
 --port 27017 --oplogSize 200 --wiredTigerCacheSizeGB 0.25

screen -S rs2 -d -m mongod --replSet myReplSet --dbpath /mongodb/data/rs2 \
 --port 27018 --oplogSize 200 --wiredTigerCacheSizeGB 0.25

screen -S rs3 -d -m mongod --replSet myReplSet --dbpath /mongodb/data/rs3 \
 --port 27019 --oplogSize 200 --wiredTigerCacheSizeGB 0.25

© 2011 - 2021 Percona, Inc.
22 / 50

Replication Exercises
4. ConFgure the Replica Set

mongo // connect to the default port 27017

rs.initiate()
// wait a few seconds
rs.status()

© 2011 - 2021 Percona, Inc.
23 / 50

Replication Exercises
5. Add the other nodes to the replica set

rs.add ('<HOSTNAME>:27018')
rs.addArb('<HOSTNAME>:27019')
// Keep running rs.status() until there's a primary and 2 secondaries
rs.status()

© 2011 - 2021 Percona, Inc.
24 / 50

Replication

Lab: Problems that may occur
bindIp parameter is incorrectly set
Replica set conFguration may need to be explicitly speciFed to
use a different hostname:

> conf = {
 _id: "<REPLICA-SET-NAME>",
 members: [
 { _id : 0, host : "<HOSTNAME>:27017"},
 { _id : 1, host : "<HOSTNAME>:27018"},
 { _id : 2, host : "<HOSTNAME>:27019", "arbiterOnly" : true},
]
}
> rs.initiate(conf)

© 2011 - 2021 Percona, Inc.
25 / 50

Replication

READS AND WRITES

© 2011 - 2021 Percona, Inc.
26 / 50

Replication and Write Concern

© 2011 - 2021 Percona, Inc.
27 / 50

Replication and Write Concern

© 2011 - 2021 Percona, Inc.
28 / 50

Replication and Write Concern
Write Concern: { w : "majority" }

Ensures the primary recorded the write to the on-disk journal
Ensures write operations have propagated to a majority of a
replica set’s voting members
Avoids hard-coding assumptions about the size of your replica set
into your application
Using majority trades off performance for durability
It is suitable for critical writes and to avoid rollbacks

© 2011 - 2021 Percona, Inc.
29 / 50

Replication and Read Concern
Allows you to control the consistency and isolation properties of
the data read from replica sets
readConcern: { level: <"local"|"available"|"majority"|linearizable"|"snapshot"> }

© 2011 - 2021 Percona, Inc.
30 / 50

local Read Concern
Default value for reads against primary
The query returns the instance’s most recent data
Provides no guarantee that the data has been written to a majority
of the replica set members (i.e. may be rolled back if primary
crashes)

© 2011 - 2021 Percona, Inc.
31 / 50

available Read Concern
Default for reads against secondaries (*)
Data might be rolled back
Doesn't query shard's primary or conFg servers for updated
metadata

Orphaned documents might be returned if chunk is being
migrated

(*): except for causally consistent sessions in a sharded cluster

© 2011 - 2021 Percona, Inc.
32 / 50

majority Read Concern
The query returns the instance’s most recent data having been
written to a majority of members in the replica set

Documents returned are guaranteed to not roll back
You can still read stale data in certain circumstances

e.g. a new primary was elected and updated data not still
propagated

© 2011 - 2021 Percona, Inc.
33 / 50

linearizable Read Concern
Wait maxTimeMS for concurrently executing writes to propagate
to a majority of replica set members before returning results
Documents returned are guaranteed to not roll back
Valid for read operations on the primary only

© 2011 - 2021 Percona, Inc.
34 / 50

snapshot Read Concern
Read concern snapshot is only available for multi-document
transactions
Controls the consistency of data your transactions read
Affected by wether the transaction is part of a causally consistent
session or not
Use to ensure you read your own writes

© 2011 - 2021 Percona, Inc.
35 / 50

https://docs.mongodb.com/manual/reference/read-concern-snapshot/
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/#sessions

Replication and Read Preference
MongoDB drivers support the following read preferences favoring the
primary node:

primary: default. Don't use secondaries.
primaryPreferred: Read from the primary but if it is
unavailable, read from secondary members.

© 2011 - 2021 Percona, Inc.
36 / 50

Replication and Read Preference
MongoDB drivers also support the following read preferences:

secondary: All operations read from the secondary members
secondaryPreferred: Read from secondary members but if
none are available, read from the primary.
nearest: Read from member of the replica set with the least
network latency, regardless of the member’s type.

© 2011 - 2021 Percona, Inc.
37 / 50

Replication

CHALLENGES

© 2011 - 2021 Percona, Inc.
38 / 50

Replication Challenges
Latency and lag

Starting in 4.2 MongoDB introduced the Flow control
mechanism (10s target)
As lag gets close to the target, operations are required to get
tickets

Challenges with chainingAllowed
Allow replication from a secondary
Enabled by default
Disabling might cause extra load on primary

© 2011 - 2021 Percona, Inc.
39 / 50

Replication

TAGS

© 2011 - 2021 Percona, Inc.
40 / 50

Replication Tags
Direct read operations to speciFc members
Develop custom write concerns for multi-DC

© 2011 - 2021 Percona, Inc.
41 / 50

Replication Tags
Add tags to the members

Specify tag sets in the read preference

conf = rs.conf()
conf.members[0].tags = { dc : "east", use : "production" }
conf.members[1].tags = { dc : "east", use : "reporting" }
conf.members[2].tags = { use : "production" }
rs.reconfig(conf)

db.collection.find({}).readPref("secondary", [{ "dc": "east", "usage": "production" }])

© 2011 - 2021 Percona, Inc.
42 / 50

Replication

LAB EXERCISES

© 2011 - 2021 Percona, Inc.
43 / 50

Replication Exercises
1. Write to the Primary

2. Read from a Secondary

What happens?

use training
db.testcol.insert({ a: 1 })
db.testcol.count()
exit // Or Ctrl-d

// Connect to one of the secondaries. E.g.:
mongo --port 27018
use training
db.testcol.find()

© 2011 - 2021 Percona, Inc.
44 / 50

Replication Exercises
3. Try the read again

4. Review the Oplog

Can you Fnd your write?

rs.slaveOk()
db.testcol.find()

use local
db.oplog.rs.find()

© 2011 - 2021 Percona, Inc.
45 / 50

Changing Member Priority
1. Login to the primary e.g.

2. change priority of one SECONDARY

3. Apply the conFguration change

mongo --port 27017

var conf = rs.conf()
conf.members[1].priority = 2

verify with by displaying the conf variable
conf

rs.reconfig(conf)

© 2011 - 2021 Percona, Inc.
46 / 50

Changing Member Priority
4. Verify with rs.conf()

Changing priority causes an election, if new priority is highest
Changing hidden + priority does not (unless current primary)

rs.conf().members[1]

© 2011 - 2021 Percona, Inc.
47 / 50

Using tags
1. Add tags to some member

2. Read from the tagged member

conf = rs.conf()
conf.members[1].tags = { dc : "east", use : "reporting" }
rs.reconfig(conf)

use training
db.testcol.find({}).readPref("secondary", [{ "dc": "east", "usage": "production" }])

© 2011 - 2021 Percona, Inc.
48 / 50

Resize the oplog
Perform on all secondaries Frst, then primary

1. Check current size in MB

2. Change the size (unit is MB)

Online resize has to be > 990MB

3. Compact to reclaim space (only when secondary!)

use local
db.oplog.rs.stats().maxSize/1024/1024

db.adminCommand({replSetResizeOplog: 1, size: 1000})

db.runCommand({ "compact" : "oplog.rs" })

© 2011 - 2021 Percona, Inc.
49 / 50

Questions

© 2011 - 2021 Percona, Inc.
50 / 50

