
High Availability

http://www.percona.com/training/

http://www.percona.com/training/

How we achieve HA?

Replica sets

Node auto discovery (drivers)

Auto failover

Geo distribute the data

© 2011 - 2021 Percona, Inc.
2 / 31

Node auto discovery

Drivers run isMaster to determine the state of the replica set

members and to discover additional members

> db.isMaster()
{
"topologyVersion" : {
"processId" : ObjectId("602be753469d04105300e1dd"),
"counter" : NumberLong(4)
},
"hosts" : [
"localhost:27017",
"localhost:27018"
],
"arbiters" : [
"localhost:27019"
],
"setName" : "myReplSet",
"setVersion" : 4,
"ismaster" : false,
"secondary" : true,
"primary" : "localhost:27018",
"me" : "localhost:27017",
...

© 2011 - 2021 Percona, Inc.
3 / 31

Replication Heartbeat

© 2011 - 2021 Percona, Inc.
4 / 31

Replication Heartbeat

Members ping each other every 2 sec

If heartbeat doesn't return in 10 sec the member is marked

innaccesible

© 2011 - 2021 Percona, Inc.
5 / 31

Election of New Primary

What triggers an election?

rs.initiate()
rs.stepDown()
Adding a new node to the replica set

Primary unreachable by other members of the set for more than

electionTimeoutMillis period (10 seconds by default)

© 2011 - 2021 Percona, Inc.
6 / 31

Election of New Primary

© 2011 - 2021 Percona, Inc.
7 / 31

Member priority

Priority affects the outcome of elections

Best-effort attempt to promote highest priority member to Primary

Members continue to call elections until the highest priority

member available becomes Primary

Priority 0 members cannot become Primary

© 2011 - 2021 Percona, Inc.
8 / 31

Votes

Non-voting members must have priority 0

Can still serve reads

Members with non-zero priority cannot have 0 votes

Max of 7 voting members per replica set

Takeaway: Only alter the number of votes in exceptional cases - best

to use priority to control election outcomes

© 2011 - 2021 Percona, Inc.
9 / 31

Retryable writes

MongoDB 4.2-compatible drivers enable retryable writes by

default

MongoDB 4.0 and 3.6-compatible drivers must explicitly enable

retryable writes by including retryWrites=true in the

connection string

Blocks for up to serverSelectionTimeoutMS before throwing

exception

© 2011 - 2021 Percona, Inc.
10 / 31

Mirrored reads

Starting in version 4.4, MongoDB pre-warms the cache of

electable secondary members

Mirror a subset of operations to a subset of electable secondaries

Enabled by default with 1% rate

db.adminCommand({ setParameter: 1,
mirrorReads: { samplingRate: 0.01 } })

© 2011 - 2021 Percona, Inc.
11 / 31

Tolerance and HA

Topics:

Rolling upgrades and maintenance risks

Secondary Reads - pros and cons

Tags - replication use cases

Tags - sharding use cases

Resolving a rollback

© 2011 - 2021 Percona, Inc.
12 / 31

Rolling Maintenance

1. Perform work on SECONDARY servers (one at a time)

2. Issue rs.stepDown()
3. Perform work on old primary

© 2011 - 2021 Percona, Inc.
13 / 31

Rolling Maintenance

Stepdown pauses for up to secondaryCatchUpPeriodSecs for

secondaries to catch up (default 10 seconds)

If still no electable secondary catches up, the primary does not

step down and the method errors

© 2011 - 2021 Percona, Inc.
14 / 31

Rolling Upgrades - Sharded clusters

Same rolling approach

Order:

1. Conbg server replica set

2. Shard replica sets

3. mongos nodes

© 2011 - 2021 Percona, Inc.
15 / 31

Rolling Upgrades and Maintenance Risks

Before 4.2 all connections were killed in a short time

Writes fail while stepDown is in process

Taking one secondary ocine will increase HA error risks!

rs.freeze() can temporarily prevent a secondary from

becoming primary

© 2011 - 2021 Percona, Inc.
16 / 31

Rolling Upgrades and Maintenance Risks (2)

Control the features that persist data incompatible with earlier

versions

Enabling backwards-incompatible features can complicate

downgrades

Allow your deployment to run without enabling these features for

a burn-in period

db.adminCommand({ setFeatureCompatibilityVersion: <version> })

© 2011 - 2021 Percona, Inc.
17 / 31

Secondary Reads - Pros and Cons

Up to 3x the number of read per second for a typical 3-node

cluster

Much better use of resources than just being there for failovers

Elections, step-downs, or taking a machine down for maintenance

all will be more costly

© 2011 - 2021 Percona, Inc.
18 / 31

Tags: Replication Use Cases

Send different types of trafc to different nodes

Reporting Nodes

Nodes using Memory engine for caching, real-time analytics,

etc.

In a Geo-distributed replset, app can query from nearest
member node

© 2011 - 2021 Percona, Inc.
19 / 31

Tags: Replication Use Cases (2)

Routing Queries based on indexes available

Custom set of indexes on few member nodes for specibc

queries

Fewer indexes on PRIMARY to improve writes

© 2011 - 2021 Percona, Inc.
20 / 31

Tags: Sharding Use Cases

Taking it to the next level you can tag things to break down:

Sending writes to the best datacenter

Sending some types of workloads for a sharded collection to

the fastest hardware, then as it ages "replace" the document to

move it to slower gear

Using client_id to dedicate shards for ultra-premium

accounts, while letting the general accounts be evenly sharded

over all shards

© 2011 - 2021 Percona, Inc.
21 / 31

Rollbacks

Primary accepted write operations that the secondaries had not

successfully replicated

Rollback data is available in BSON format

Flow control helps minimize lag

Write concern majority helps avoid rollbacks

The rollback time limit is conbgurable using the parameter

rollbackTimeLimitSecs (default 24 h)

© 2011 - 2021 Percona, Inc.
22 / 31

Rollbacks

For each collection whose data is rolled back, the rollback bles are

located in /dbpath/rollback/collectionUUID e.g.

To match the UUID with the collection name

Read the data with bsondump

/dbpath/rollback/20f74796-d5ea-42f5-8c95-f79b39bad190/removed.2020-02-19T04-57-11.0.bson

grep "rollback file" /var/log/mongodb/mongod.log

© 2011 - 2021 Percona, Inc.
23 / 31

Disaster Recovery & Geo Redundancy

DR is not necesarily Geo redundancy, which do you really need,

maybe both?

How much latency and data loss is acceptable?

Sharding makes it harder

A replica set member in different Geo location?

3rd party tool to replicate between sharded clusters?

© 2011 - 2021 Percona, Inc.
24 / 31

Exercises

Rebuild a replicaset member

© 2011 - 2021 Percona, Inc.
25 / 31

Rebuild a replicaset member

1. Connect to the second member of the replicaset

2. Shutdown the instance from the console

3. Verify the second member is down from the PRIMARY

mongo --port 27018

use admin
db.shutdownServer()

mongo --port 27017

rs.status()

© 2011 - 2021 Percona, Inc.
26 / 31

Rebuild a replicaset member

4. We should see something like below

5. Delete the existing data directory

 {
 "_id" : 1,
 "name" : "localhost:27018",
 "health" : 0,
 "state" : 8,
 "stateStr" : "(not reachable/healthy)",
 ...
 },

rm -rf /mongodb/data/rs2/*

© 2011 - 2021 Percona, Inc.
27 / 31

Rebuild a replicaset member

6. Start mongod with empty data directory

7. Verify the state changes from the PRIMARY

8. Inspect the logs to see the initial sync process

screen -S rs2 -d -m mongod --replSet myReplSet --dbpath /mongodb/data/rs2 \
 --port 27018 --oplogSize 200 --wiredTigerCacheSizeGB 0.25

mongo --port 27017

run this a couple times to see how the status changes from STARTUP to SECONDARY
rs.status().members

screen -x rs2

© 2011 - 2021 Percona, Inc.
28 / 31

Exercises

Step Down the current PRIMARY

© 2011 - 2021 Percona, Inc.
29 / 31

Step Down (Demote) the Current PRIMARY
1. Connect to the current PRIMARY

2. Stepdown to demote current PRIMARY status

3. Wait a few seconds and verify status

mongo --port 27018

rs.stepDown(60)

rs.status()

© 2011 - 2021 Percona, Inc.
30 / 31

Questions

© 2011 - 2021 Percona, Inc.
31 / 31

